Alex C. MUELLER Deputy Director

Transmutation von Atommüll

Avant Propos

- Der Wissenschaftler muss Fakten sammeln, beschreiben, analysieren.
- Das ist per Definition ein nachvollziehbarer Vorgang.
- Der Bürger hat demokratisches Entscheidungsrecht nach freier Meinungsbildung.
- Diese Meinungsbildung sollte natürlich zunächst einmal auf (wissenschaftlichen) Fakten beruhen, nur dann ist auch das demokratische System als Solches "sustainable", es handelt sich also gewissermassen um eine demokratische Bürgerpflicht.
- Erst dann, in einem zweiten Schritt darf die Güterabwägung erfolgen, in der andere Kriterien (z.b. ethische) den Ausschlag geben können.
- Der heutige Vortrag soll Informationen zum ersten Schritt liefern, das Publikum möge aber dem Redner gestatten, auch seine Meinung gelegentlich durchblicken zu lassen.

2005 World Energy Flow Diagram

Source: Lawrence Livermore National Laboratory chart figures in quads - 1 quad=1.05 EJ

17 Juni 2011, Institut für Physik, Universität Heidelberg

IN2P3

Zukünftiger Energiebedarf

These 1: "Die Weltbevölkerung wird wachsen"

These 2: "Der pro Kopf Energieverbrauch wird steigen, auch wenn die Industrienationen massiv Energie einsparen." Wieso?

Im Mittel verbraucht ein US-Amerikaner heute 15 Mal mehr Energie als ein Inder, ein Deutscher acht Mal mehr. Die Schwellenländer holen auf.

Hypothesis for 2050

Energy consumption will only increase by a foctor of 2 (energy economies !!)
 CO₂ emissions will be reduced by a factor of 2

		2005			205	50
Consommation	~10 Gtep	(% de 10 Gtep)	20 <i>G</i>	tep (% de 20 Gtep)
Fossiles	7.9	78%	: 2	4.1	20%	
Bio & Waste	1.0	→ 10%	× 3	3.3	17%	
Hydro	0.6	 → 6%	x 2	1.2	6%	
Other Renewo	ables* 0.05	 → 0.5%	× 100	5.4	27%	
Nuclear	0.6	6%	× 10	6.0	30%	

*Solar (thermal and photovoltaic, wind, geothermal, biomasse)

Total de CO₂ émis: 24 milliards de tonnes par an

Émissions de gaz carbonique dues à l'énergie (en tonnes de CO₂/habitant, 1999)

The 2010 EPI*-index (U Yale et al.) *Environmental Performance Index

- Elektrizität ist "hochwertige" Energie. Man kann Heizen, Treibstoff synthetisieren, Fahrzeuge bewegen, Industrie versorgen usw.
- Für "einfache" Aufgaben (z.B. Heizen) ist es teilweise trotzdem sinnvoller direkt den Primärenergieträger zu verwenden, weil die Umwandlungsverluste wegfallen.

(Zitat J. Stadlmann, GSI)

Cumulated required Energy Needs

thesis T. Marheineke, Univ. Stuttgart

	lron [kg / GWh _{el}]	Copper [kg / GWh _{el}]	Bauxite [kg / GWh _{el}]
Coal (43 %)	2308	2	20
Lignite (40 %)	2104	8	19
Gas CC (57.6 %)	969	3	15
Nuclear (PWR, ult. waste dispo.)	445	6	27
PV poly	6708	251	2100
(5 kW) amorph	8153	338	2818
Wind 5.5 m/s	5405	66	54
(1 MW) 4.5 m/s	10659	141	110
Hydro (3.1 MW)	2430	5	10

Source: Marheineke 2002

Development of costs in the German Manufacturing Industry (from a 2009 Fraunhofer Study, in constant prices)

note: extreme market volatility for raw material prices, sharp drop during banking crisis

17 Juni 2011, Institut für Physik, Universität Heidelberg

Future demand of (rare) raw materials (from a 2009 Fraunhofer study)

Raw material	2006	2030	Emerging technologies (selected)	
Gallium	0.28	6.09	Thin layer photovoltaics, IC, WLED	
Neodymium	0.55	3.82	Permanent magnets, laser technology	•
Indium	0.40	3.29	Displays, thin layer photovoltaics	note:
Germanium	0.31	2.44	Fibre optic cable, IR optical technologies	1) authors recognize
Scandium	low	2.28	SOFC, aluminium alloying element	extreme attricuity of
Platinum	low	1.56	Fuel cells, catalysts	reliable predictions
Tantalum	0.39	1.01	Micro capacitors, medical technology	2) only impact of
Silver	0.26	0.78	RFID, lead-free soft solder	c) only impact of
Tin	0.62	0.77	Lead-free soft solder, transparent electrodes	technologies analyses
Cobalt	0.19	0.40	Lithium-ion batteries, synthetic fuels	"husiness-as-usual"
Palladium	0.10	0.34	Catalysts, seawater desalination	underlying for
Titanium	0.08	0.29	Seawater desalination, implants	current technologies.
Copper	0.09	0.24	Efficient electric motors, RFID	eu., e., e., e., e., e., e., e., e., e., e
Selenium	low	0.11	Thin layer photovoltaics, alloying element	
Niobium	0.01	0.03	Micro capacitors, ferroalloys	
Ruthenium	0	0.03	Dye-sensitized solar cells, Ti-alloying element	
Yttrium	low	0.01	Super conduction, laser technology	
Antimony	low	low	ATO, micro capacitors	
Chromium	low	low	Seawater desalination, marine technologies	

Key technologies for a low carbon energy system

Generations of nuclear power plants

Present Gen-II Nuclear Power Plants in Europe

Worldwide: 440 NPP on grid 560 planned (170 sites)

Kernkraftwerke in Europa, Stand 30.9.2009

From fuel to waste in a (typical) present Gen-II reactor

aus dem « Karlsruher Lexikon »

Zusammensetzung des Kernbrennstoffs für Leichtwasserreaktoren vor und nach dem Reaktoreinsatz

Nuclear energy makes 880 TWh/y (35% of EU's electricity), but PWR produce important amounts of high level waste

Nuclear Waste from present LWR's (Light Water Reactors)

- ➔ is highly radiotoxic (10⁸ Sv/ton)
- → at the end of presenttype nuclear deployment about 0.3 Mtons, or 3x10¹³ Sv, compare to radiation workers limiting dose of 20mSv
- → the initial radiotoxicity level of the mine is reached after more than 1 Mio years
- → worldwide, at present 370 "1GW_{el} equiv. LWR" produce 16% of the net electricity

• Geologic time storage of spent fuel is heavily debated

- → leakage in the biosphère ?
- → expensive (1000 €/kg), sites? (Yucca mountain would hold 0.07 Mio tons!!)
- → public opposition

The Yucca Mountain Dilemma

• In the United States, the plan is/was to send all spent nuclear fuel to the Yucca Mountain Repository. The challenge they are faced with is that new repositories will be needed as nuclear energy continues or grows.

Am241 fission and capture cross sections

Neutron consumption per fission ("D-factor") for thermal (red) and fast (blue) neutron spectra

thermal neutron "make nuclear waste" and do not use the resource optimally

Sustainability = Fast Neutrons

Partitioning:

Separating out of spend fuel certain chemical elements

<u>Transmutation:</u> Transforming a chemical element into another

<u>Advanced fuel</u> cycles with P/T may greatly benefit to deep geological storage:

- Reduction of radiotoxicity.
- Reduction of the heat load

larger amount of wastes can be stored in the same repository
 according to the PATEROS study a "one-order-of-magnitude" reduction in the needed repositories can be expected (a factor of 50 under optimum conditions)

Beispiel für Partitioning: PUREX

aus dem Karlsruher Lexikon

Nach Auflösen des bestrahlten Brennstoffes in Salpetersäure werden durch organische Lösungsmittelextraktion – als organisches Lösungsmittel dient 30-prozentiges Tributylphosphat (TBP) in Kerosin – Uran und Plutonium in der organischen Phase gehalten, während die Spaltprodukte in der wässrigen, salpetersauren Phase verbleiben. Weitere Verfahrensschritte erlauben anschließend das Trennen von Uran und Plutonium voneinander.

ADS: Accelerator Driven (subcritical) System for transmutation

Both critical (fast!!) reactors and sub-critical Accelerator Driven Systems (ADS) are potential candidates as dedicated transmutation systems.

Critical reactors, however, loaded with fuel containing large amounts of MA pose safety problems caused by unfavourable reactivity coefficients and small delayed neutron fraction.

ADS operates flexible and safe at high transmutation rate (sub-criticality not virtue but necessity!)

17 Juni 2011, Institut für Physik, Universität Heidelberg

Euler evotore de protone regule

17 Juni 2011, Institut für Physik, Universität Heidelberg

2006: Succes of the Megapie experiment at PSI

PDS-XADS Reference Accelerator Layout

Strong R&D & construction programs for LINACs underway worldwide for many applications (Spallation Sources for Neutron Science, Radioactive Ions & Neutrino Beam Facilities, Irradiation Facilities)

High-power proton CW beams

Table 1 – XT-ADS and EFIT proton beam general specifications **XT-ADS** EFIT Maximum beam intensity 2.5 – 4 mA 20 mA Proton energy 600 MeV 800 MeV Vertically from above Beam entry Beam trip number < 20 per year (exceeding 1 second) < 3 per year (exceeding 1 second) Beam stability Energy: ± 1 %, Intensity: ± 2 %, Size: ± 10 % An area of up to 100 cm² must be "paint-Beam footprint on target Circular 5 to 10 cm, "donut-shaped" able" with any arbitrary selectable intensity profile CW, with 200 μ s zero-current holes every 10⁻³ to 1 Hz, Beam time structure + pulsed mode capability (repetition rate around 50 Hz)

Extrememely high reliability is required !!!

Fault Tolerance, a new concept uniquely applicable in a modular super conducting Linac

Fault tolerance in the independently phased SC sections is a crucial point because a few tens of RF systems failures are foreseen per year.

2. Linac retuning after the failure of a RF cavity or of a quadrupole

 \rightarrow Local compensation philosophy is used

 \rightarrow In every case, the beam can be transported up to the high energy end without beam loss

29

29

An example of R&D Intermediate-energy RF structure

Beam dump

pallation targe & sub-critical

core

started in FP6 EUROTRANS and continued in FP7 MAX

Intermediate Energy Section (3/5 MeV -> 100 MeV)

2 main types of structures are evaluated

- Multi-gap H structures (front end)
- **Superconducting spoke cavities** (independently-phased linac)

SC elliptical cavities:

700 MHz, 2 sections for XT-ADS

Independently-phased

Superconducting Section

- 500 MeV

SC spoke caviti 350 MHz, 1 or

sections

β = 0.15 ?

β = 0.35

ween 5 & 50 MeV

Linac Front End

B = 0.47

Testexperiment in Mol (B): GENEPI-3C coupled to VENUS-F

GENEPI 3C Acelerator

Present R&D for Myrrha within FP7

MYRRHA and Gen-IV: a LFR demonstrator

The Roadmap for MYRRHA

On March 5, 2010 the Belgian government decided the funding of the MYRRHA at a level of 40% of the total cost of the project with a first budget release of 60 M€ for the period 2010-2014 aiming at:

- completing the front-end engineering design (FEED) of the project,
- · securing the licensing of the project
- obtaining the construction permit
- \cdot establishing the international consortium

The main next milestones of the project are as follows:

• 2010-2014 :	Completion of Front End Engineering Design
· 2014 :	Obtaining the construction permit
· 2014 :	Consolidation of the international consortium
· 2015 :	Tendering and contract awarding
• 2016-2018 :	Construction of components and civil engineering
· 2019 :	On-site assembly
· 2020-2022 :	Commissioning
· 2023 :	Progressive start-up
· 2024 :	Full power operation

sh shinènil rustarèlèoon'l

INJECTOR BUILDING

sh shipènil rustrisièssell AlfRRVM

sh shipènil rustrisièssell AlfRRVM

La ligne de faisceau finale

From Tholière et al.: MUST : MUltiple Spallation Target ADS

Flux radiaux avec 3 cibles (from Guertin et al.)

(MeV)

17 Juni 2011, Institut für Physik, Universität Heidelberg

Concept MUST à 4 cibles

17 Juni 2011, Institut für Physik, Universität Heidelberg

Ordres de grandeurs à l'équilibre

Application d'ACDC #1

- Durée de cycle = 7 ans
- Durée de refroidissement = 5 + 2 ans
- Composition initiale : A.M. sortie RNR/MOX
- Multi-recyclé : ²³⁷Np, ²⁴¹Am, ²⁴³Am ²⁴²Cm, ²⁴⁴Cm

Strate électrogène RNR-MOX :

Puissance totale = 63.8 GW_e Nombre d'unités = 44 réacteurs de 1.45 GW_e

Strate incinératrice ADS :

Puissance unitaire = $3 GW_{th}$

Atomes	Masse à t = 0 an	Masse à t final
Np	1.15 †	0.02 †
Am	8.51 †	0.97 †
Cm	1.57 †	1.01 +

Flux d'actinides mineurs : → 2578 kg/an

Taux de disparition d'actinides mineurs : 1319 kg/an

\rightarrow 2 ADS pour y parvenir
1kg d'AM : P = 2.5 MWth \rightarrow 2.2 ADS

Ordres de grandeurs à l'équilibre

Application d'ACDC #2

- Durée de cycle = 7 ans

- Durée de refroidissement = 5 + 2 ans

- Composition initiale : A.M. sortie REP/UOX

- Multi-recyclé : ²³⁷Np,

²⁴¹Am, ^{242*}Am, ²⁴³Am,

²⁴³Cm, ²⁴⁴Cm, ²⁴⁵Cm, ²⁴⁶Cm, ²⁴⁷Cm

Strate incinératrice ADS :

Puissance unitaire = $3 GW_{th}$

Atomes	Masse à t = 0 an	∆Masse à † final
Np	1.64 †	1.46 †
Am	6.82 †	5.93 t
Cm	2.86 †	1.33 †

Strate électrogène REP-UOX :

Puissance totale = 63 GW_e Nombre d'unités = 49 réacteurs de ~1.3 GW_e

M _{Np}	=	1.83 kg/TWhé
M _{Am}	=	7.25 kg/TWhé
M _{Cm}	=	1.25 kg/TWhé

→ 1008 kg/an → 4001 kg/an → 690 kg/an

Flux d'actinides mineurs : → 5699 kg/an

Taux de disparition d'actinides mineurs : 1246 kg/an

Once-through vs. Transmutation

FP 5,6,7 R&D clusters on Partitioning and Transmutation

- > Phasing out of fossile fuel needs to be done in a sustainable way
- > Nuclear Power likely (?) to increase by factor 2-5 worldwide (possible influence from Japan Tsunami???)
- Waste from present (Gen-2), and now-installed (Gen-3) can be adressed by dedicated transmutation systems (ADS)
- > (fast) Gen-4 concepts "self-incinerate" their waste.
- > ADS for taking care of GEN-II/III legacy
- > good progress for a european ADS demonstrator
- > Gen-4 molten salt reactor with Thorium produces much less waste
- > Conclusion after conclusion: some data on Fukushima

Sanitary Impact (Tchernobyl vs. Fukushima), some numbers taken from assessment by R. Massé and IRSN publications

	Tchernobyl	Fukushima
• released radioactivity ¹³¹ I ¹³⁷ Cs refractory elements Plutonium	1500 PBq 90 PBq abundant in vincinity "	90 PBq 10 PBq traces difficult to distinguish from Nuclear Weapon tests
 doses to "liquidators" and death rate 	average 117 mSv to 530000p 237p 1000 mSv to 16000mSv	600p total, all < 250 mSv 30p >100 , 3p > 170mSv
deaths for high-dose 237p other liquidators	28p "immediately" 33p in 20y 4,6% cancer-rate equiv. to non affected population!	none none
 general population 	6400000p average 100 mSv to thyroid, no excess cancer rate except 7000 thyroid cancers (mainly young children), 15 deat likely to increase	none hs,
 some general remarks 	1) even if there are neither other congenital deformations!), there sanitary impacts (suicide, alcoho	excess cancers (nore excess might be difficult-to-assess I, tobacco) because of

2) Earthquake + Tsunami = 30000 deaths "Feinstaub" = 250000 deaths/v in Europe, 1.6

"Feinstaub" = 250000 deaths/y in Europe, 1,6 Mio deaths from bio-mass in developing countries and already 38 deaths from echericia coli contaminated german bio-food

generalised "misery of life"

Reaktor-Sicherheit 1

Nukleare Energie und Sicherheit

Laufende Verbesserung der Sicherheit

Paul Scherrer Institut • 5232 Villigen PSI

Potentialstudie 2004/Potential Nuklear/HA 40/9